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A B S T R A C T

A unified micromechanical approach is proposed to evaluate the electro-magneto-mechanical response of coated
long fiber composites with transversely isotropic piezoelectric-piezomagnetic behaviour. The developed fra-
mework takes into account the presence of electro-magneto-mechanical eigenfields. The multiscale strategy is
based on solving specific boundary value problems in the same spirit as in the Composite Cylinders Assemblage
technique. The solution of these problems provides analytical expressions of the dilute electro-magneto-me-
chanical concentration tensors. With the help of the latter, the mean-field approach of Mori–Tanaka is adapted to
identify i) the overall response of the composite, and ii) the various average electro-magneto-mechanical fields
generated in the matrix, the fiber and the coating layers for known macroscopic fields. It is found that the novel
approach has the same accuracy as existing homogenization techniques in terms of electro-magneto-mechanical
properties. The ability of the proposed model to predict both macroscopic and average microscopic fields per
phase when eigenfields take place is finally demonstrated.

1. Introduction

Piezoelectric and piezomagnetic materials have received much at-
tention in the last decades and are being increasingly used in various
applications such as aerospace, biomedical, vibration control and many
others. These materials are extensively used as actuators, sensors and
transducers. Typically, active actuator materials have the capability to
convert electrical and/or magnetic energy into mechanical energy,
while sensor materials provide an opposite conversion. To avoid the
increased weight of conventional piezoelectric or piezomagnetic ma-
terials, these smart materials are generally combined with polymers in
the form of composites. Such combination permits to develop new
transducers and sensors with high strength, increased thermal con-
ductivity, low thermal expansion and advanced electromechanical be-
haviour. However, the co-existence of piezoelectic and piezomagnetic
coupling effects in such composite materials and the involvement of
many constituents-based parameters make the modelling of their mul-
tiphysical behaviour complex. From a micromechanics point of view,
special techniques are required to investigate the coupling effects and
the whole performance of the composite. Such modelling tools hold the
key for using these smart composites in many applications in more
intelligent ways.

The modelling of the piezoelectric-piezomagnetic composites is still

an open topic (e.g., Nan, 1994; Wu and Huang, 2000; Bishay and Atluri,
2016; Ye et al., 2018; Kuo and Hsin, 2018, etc.). Within the last 30
years, significant progress has been made in the development of models
that study the combined thermo-electro-magneto-elastic behaviour of
composites (Tang and Yu, 2009; Bravo-Castillero et al., 2009;
Akbarzadeh and Chen, 2014; Koutsawa, 2015). Most of the existing
models in literature were focused on the thermoelastic regime and have
paid particular attention to the study of both piezoelectric and piezo-
magnetic coupling effects. Dunn and Taya (1993) have developed an
Eshelby-type approach to investigate the electroelastic behaviour of
piezoelectric composite materials by identifying appropriate Eshelby
and concentration tensors. This approach has then been extended to
consider electro-magneto-elastic responses (Huang and Kuo, 1997; Li
and Dunn, 1998; Li, 2000). Huang et al. (1998) have identified electro-
magneto-elastic Eshelby tensors for elliptical, rod, penny and ribbon
shaped inclusions. Benveniste (1995) has studied the electro-magnetic
effect in fibrous composites with piezoelectric and piezomagnetic
phases using the composite cylinders assemblage method.
Aboudi (2001) has developed a homogenization micromechanical
method for the prediction of the effective moduli of coupled electro-
magneto-thermo-elastic composites, while Lee et al. (2005) have pro-
posed numerical and Eshelby-based analytical strategies for three phase
electro-magneto-elastic composites. Moreover, the electro-magneto-
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thermo-elastic composites have extensively been studied using the
periodic homogenization theory (Bravo-Castillero et al., 2008; 2009;
Challagulla and Georgiades, 2011; Hadjiloizi et al., 2013; Kuo and
Peng, 2013). Pakam and Arockiarajan (2014) have developed a mi-
cromechanical scheme for studying ferroelectric and magnetostrictive
composites reinforced with square cross section fibers and subjected to
high electro-magnetic loading conditions. Using Hill’s interfacial op-
erators, Dinzart and Sabar (2011) and Koutsawa et al. (2011) have
proposed micromechanical models based on Mori–Tanaka and self
consistent schemes to investigate the thermo-electro-magneto-elastic
behaviour of magneto-piezoelectric composites with multi-coated el-
lipsoidal particles.

This work aims at developing a unified micromechanical approach
in inelasticity to analytically express the electro-magneto-elastic and
inelastic concentration tensors and effective material parameters for
coated long fiber composites with transversely isotropic piezoelectric-
piezomagnetic behaviour. The coating between the matrix and the re-
inforcement is witnessing strong coupling effects with complex local
behaviour. Inelastic deformation mechanisms such as plasticity and/or
martensite transformation occur frequently at the coating region and
strongly interact with the local damage of the matrix/reinforcement
interface (Payandeh et al., 2010; 2012). To reiterate, one of the aims of
this work is to develop appropriate tools to assess the electro-magneto-
inelastic fields in the matrix, fibers and coating layers. The current work
aims at elaborating multiscale approaches to design more accurate
damage and failure criteria for piezoelectric-piezomagnetic composites.

A novel approach, adapted to the Mori–Tanaka homogenization
scheme, is presented in this manuscript. The approach is based on
solving specific boundary value problems, extending the composite
cylinders model of Hashin and Rosen (1964) to account for the in-
elasticity. The latter effort can be considered as a generalization of the
Dvorak and Benveniste (1992) methodology, providing analytical ex-
pressions of the dilute electro-magneto-mechanical concentration ten-
sors, which can be utilised in classical micromechanical techniques,
such as Mori–Tanaka or self consistent methods. The advantage of such
information is that it permits to identify not only the overall response of
the composite, but also the various average electro-magneto-mechan-
ical fields generated in the matrix, the fiber and the coating layers for
known macroscopic electro-magneto-mechanical conditions.

The effect of eigenfields (inelastic strains, electric or magnetic ei-
genfields) on the overall response, as well as in the average response of
the phases, is important for the study of nonlinear behaviour of com-
posites. Indeed, while in the current manuscript the described boundary
value problems are linear, the provided solutions can be seen as the
mean to include nonlinear mechanisms per phase. The latter should be
described through evolution laws of the nonlinear fields and activation
criteria. Via an appropriate incremental, iterative scheme, one can use
the linearised micromechanics solution provided here and adapt it to
account for the constitutive laws of the phases (see for instance
Pettermann et al., 1999 for purely mechanical multiscale analysis).

To fulfill the underlined objectives, a brief description of the
Eshelby’s problem for coated inhomogeneity with eigenfields at the
matrix fibers and coating layers is first presented. The Eshelby problem
is then solved by considering special boundary condition problems
analogue to those introduced by Hashin and Rosen. Then, numerical
computations are conducted and discussed in detail. These computa-
tions have permitted to demonstrate the capabilities of the developed
micromechanics technique. Several conclusions, drawn from the find-
ings, are finally put forward.

2. Preliminaries

For small deformations and rotations, electrostatic conditions with
no electric charge and magnetostatic conditions with no current den-
sity, the strain tensor, ε, the electric field vector, , and the magnetic
field vector, , can be expressed with the help of the displacement

vector, u, the electric scalar potential, ,e and the magnetic scalar po-
tential1, ,m respectively, through the tensorial relations
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where the symbol [.]T stands for the usual vector/matrix transposes in
orthogonal coordinates.

On the other hand, the stress tensor, σ, the electric displacement, ,
and the magnetic induction, , written in the vector-type forms

=
= =

[ ] ,
[ ] , [ ] ,

T

T T
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obey the following equilibrium, electrostatic and magnetostatic equa-
tions
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or, in indicial form,
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Besides, a piezo-electro-magnetic, transversely isotropic material with
eigenfields obeys the following constitutive laws, written in matrix-type
notation2

=
= + +
= + +

L e f
e j
f j

·[ ] ·[ ] ·[ ],
·[ ] ·[ ] ·[ ],
·[ ] ·[ ] ·[ ],

p p p

T p e p p

T p T p m p (8)

where the index p above a field denotes an eigenfield. Example of ei-
genfields are those generated by the presence of temperature (e.g.
thermal expansion strain, etc.). In addition, L, κe, κm, e, f, j denote the
elasticity, the dielectric properties, the magnetic permeabilities, the
coupled electro-mechanical, the coupled magneto-mechanical and the
coupled electro-magnetic tensors, respectively. For transversely iso-
tropic behaviour with axis of symmetry parallel to the direction 3, these
tensors are expressed in the following matrix-type forms
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1 In classical magnetomechanics studies, the natural choice is to introduce a
vector potential. When dealing with multiscale approaches, the absence of
microscopic current density permits an alternative formalism with scalar po-
tential, which simplifies the calculations.
2 The symbol · in the matrix notation denotes the common matrix multi-

plication. The product between a scalar and a matrix is represented without a
symbol.
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The constants Ktr, l, n, μtr, μax, e31, e33, e15, f31, f33, f15, ,e
11 ,e

33 ,m
11 ,m

33 j11
and j33 are material parameters. Eq. (8) can also be written in the fol-
lowing compact form

= E E·[ ],p (13)

where is the 12 × 12 symmetric matrix given as

=
L e f
e j
f j

,T e

T T m (14)

and Σ, E, Ep the 12 × 1 vectors defined as

= = =E E[ ] , [ ] , [ ] .T T p p p p T (15)

Finally, the generalised vector

=U u u u[ ] ,e m T1 2 3 (16)

is also introduced.
In the sequel, when dealing with various material phases, the fol-

lowing notation is postulated for a quantity a: i) A superscript on the
symbol of the form a(q) denotes that the quantity a is spatially depen-
dent. ii) A subscript on the symbol of the form aq is used for constant or
average value of the quantity. The index q can take the values 0, 1 or 2.

3. Coated long fiber composites with eigenfields

Identifying the overall properties of a composite sensitive to electro-
magneto-mechanical loading conditions is the task of homogenization
strategies and techniques. In this paper, the mean-field approach of the
Mori–Tanaka method is followed. This method relies on two aspects:

• solving a basic (Eshelby-type) problem of a coated inhomogeneity
embedded in an infinite medium, allowing to compute the so-called
”interaction” or ”dilute concentration” tensors.
• using this information in the level of the composite for identifying
the ”concentration” tensors, whose knowledge leads to link the
microscopic and macroscopic fields in order to obtain the macro-
scopic matrix ¯ and the macroscopic eigenfield Ē p of the overall
composite.

3.1. Eshelby’s problem for coated inhomogeneity with eigenfields in all
phases

Consider a coated cylindrical inhomogeneity, embedded in an in-
finite medium. The medium, the inhomogeneity and the homothetic
coated layer are characterised by constant generalised moduli, ,0 1
and ,2 respectively. The inhomogeneity occupies the space Ω1 with
volume V1, is bounded by the surface ∂Ω1 and is subjected to the uni-
form eigenfield E p

1 . The coating layer occupies the space Ω2 with vo-
lume V2, is bounded by the surfaces ∂Ω1 and ∂Ω2 and is subjected to the

uniform eigenfield E p
2 . The medium occupies the space Ω0, which is

extended to infinity (boundary surface ∂Ω∞), and is subjected to the
uniform eigenstrain E p

0 . At far distance, a linear field
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with ,ij0 ,i0 i0 ( =i j, 1, 2, 3) constant values, is applied (see Fig. 1).
For this problem, which is a generalised version of the famous

Eshelby inhomogeneity problem (Eshelby, 1957) accounting for mul-
tiphysics phenomena, the constitutive law is position dependent and
reads

=x
E x E x
E x E x
E x E x

( )
·[ ( ) ], ,
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0 0 0
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The boundary conditions correspond to uniform E0 at far distance.
The main goal of this problem is to compute the average fields in-

side the inhomogeneity and inside the coating layer

= =E E x x E E x x
V V
1 ( )d and 1 ( )d ,1
1

2
21 2 (19)

respectively, when the applied field, E0, at far distance and the eigen-
fields E ,p

0 E ,p
1 E p

2 are known. In other words, the purpose is to evaluate
the generalised, 12 × 12 elastic and inelastic interaction tensors, Ti
and Tq i

p
, for =i 1, 2 and =q 0, 1, 2, for which the following relations

hold

= +
=

E T E T E· · .i i
q

q i
p

q
p

0
0

2

,
(20)

The above expression is a direct extension of the corresponding one in
the original Transformation Field Analysis approach of Dvorak and
Benveniste (1992). In purely mechanical problems, the first term is the
usual elastic interaction tensor of a phase, connecting the total strain in
the phase i with the far field applied strain. The sum of the following
terms expresses the dependence of the total strain in the phase i from
the inelastic strains of all the phases in the representative volume ele-
ment.

To assist the computations, the ratio = +V V V/[ ]1 1 2 is identified.

Fig. 1. Cross section of coated cylindrical fiber with homothetic topology inside
an infinite medium. All phases have homogeneous material properties and are
subjected to uniform eigenfields. Moreover, the medium is subjected to linear
displacement, electric potential and magnetic potential at far distance.
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3.2. Proposed methodology: analytical solutions in special boundary value
problems

The proposed methodology is motivated by the studied boundary
value problems by Hashin and Rosen (1964) in their famous composite
cylinders assemblage theory. The necessary modifications on these
problems, discussed in the sequel, provide the exact solution for the
interaction tensors. Similar technique has been utilised in various ar-
ticles (Benveniste et al., 1989; Chatzigeorgiou et al., 2012; Wang et al.,
2016; Chatzigeorgiou and Meraghni, 2019; Chatzigeorgiou et al., 2019)
for studying the mechanical and piezoelectric response of long fiber
composites.

Before passing to the actual boundary value problems, it is essential
to express all the fields and the conservation laws in cylindrical co-
ordinates.

3.2.1. Expressing the Eshelby’s inhomogeneity problem in cylindrical
coordinates

Inside the representative volume element the various fields gener-
ated at every phase q ( =q 0, 1, 2) depend on the spatial position, i.e

U x E x x E x x( ), ( ), ( ), ( ), .q q q p q
q

( ) ( ) ( ) ( )

Due to the geometry of the inhomogeneities, the problem can be
transformed in cylindrical coordinates, using a system of concentric
cylinders for the inhomogeneity, the coating layer and the infinite
matrix (see Fig. 2). In cylindrical coordinates, the axes (x, y, z) are
transformed to (r, θ, z), according to the relations
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The vectors and tensors in cylindrical coordinates are noted with an arc
above the symbol. Thus, in cylindrical coordinates, the fields are
written as
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In addition, the strain, electric and magnetic field components in each
phase are given using the following expressions
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The inhomogeneity is considered to have radius r equal to r1 and the
coating layer has external radius r2 (see Fig. 1). Using the radii of the
concentric cylinders, one obtains = r r/1

2
2
2.

The continuity conditions between i) the inhomogeneity and the
coating layer, and ii) the coating and the matrix are expressed through
the relations
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Due to the transverse isotropy of all phases, the generalised modulus, ,
retains the same form in cylindrical coordinates.

In the following subsections, the boundary value problems are
presented and the analytical form of the solution (in terms of the

Fig. 2. Coated cylindrical fiber with homothetic topology inside an infinite
medium, which is represented as a concentric cylinder. All the fields are ex-
pressed in cylindrical coordinates.

=

= + + + +u
r r

u u
r

u
z

u
r r

u u
r

u
r

u
z r

u u
z

2 2 2

1 1 1 ,

q
rr

q q
zz

q
r

q
rz

q
z
q

T

r
q q

r
q

z
q q

r
q q

z
q

r
q

z
q q

T

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(22)

G. Chatzigeorgiou, et al. Mechanics of Materials 138 (2019) 103157

4



generalised vector U
q( )
) is given.

3.2.2. Analytical boundary value problems
The four boundary value problems which allow to compute the

interaction tensors are the following:
• Axial shear / in-plane electric and magnetic field
Displacement, electric and magnetic potential boundary conditions

at far field (when rext tends to infinity) are expressed using the fol-
lowing formulas

= =
=
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u r
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where β, βe and βm are considered known. In addition, all phases are
subjected to the following eigenfields
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for =q 0, 1, 2 and the values of sq, sq
e and sq

m being known. The latter
expressions correspond to uniform shear strain on the plane x x1 3 and
uniform electric and magnetic field in the x1 direction (see Fig. 3). The
analytical solution for the displacement field, the electric potential and
the magnetic potential at every r, θ and z takes the form
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with = 11 and = 12 . The unknown coefficients Ξq,i, q i
e

, and q i
m

, are
determined from the boundary conditions, the interface relations (25)
and (26) and the condition that the displacements, the magnetic po-
tential and the electric potential are finite at =r 0.

• Transverse shear strain
Displacement boundary conditions at far field (when rext tends to

infinity) are expressed using the following equations
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where γ is known. All phases are also subjected to the eigenstrains
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for =q 0, 1, 2 and the value of sq being known. The latter expression
corresponds to uniform shear strain on the plane x x1 2 (see Fig. 4).
The analytical solution for the displacement field at every r, θ and z
takes the following form
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In such loading case, the unknown coefficients Ξq,i are determined from
the boundary conditions, the interface relations (25) and (26) and the
condition that the displacements are finite at =r 0.

• Plane strain / axial electric and magnetic field

Fig. 3. Boundary value problem for axial shear/in-plane electric and magnetic
field conditions.

Fig. 4. Boundary value problem for transverse shear strain conditions.
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Displacement, electric and magnetic potential boundary conditions
at far field (when rext tends to infinity) are expressed as follows
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where β, γ, βe and βm are assumed known. All phases are subjected to
the eigenfields
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where the values of sq,β, sq,γ, sq
e and sq

m are known for =q 0, 1, 2. The
latter expressions correspond to uniform biaxial strain state with
normal components on the x1 and x2 directions, and uniform electric
and magnetic fields in the x3 direction. Two special cases are considered
here:

- uniform strain at the x1 direction, which is obtained by setting
= and =s sq q, , (see Fig. 5),

- uniform strain at the x2 direction, which is obtained by setting
= and =s sq q, , .

The analytical solution for the displacement field, the electric po-
tential and the magnetic potential at every r, θ and z takes the following
form

= +

=

=
=
=

= =
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i i
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(36)

In the above expressions, = 11 and = 1,2 while ψq,i and ξi for
=i 1, 2, 3, 4 are given by the relations described in the previous
boundary value problem. Moreover, the unknown coefficients Ξq,i, Zq,i
are determined from the boundary conditions, the interface relations
(25) and (26) and the condition that the displacements are finite at

=r 0.
• Hydrostatic strain / axial inelastic strain
Displacement boundary conditions at far field correspond to hy-

drostatic strain where

= = =u r u u z, 0 and .r zext ext ext ext ext (37)

All phases are subjected to the eigenstrains

= s [0 0 1 0 0 0] ,p q
q

T( )
(38)

for =q 0, 1, 2 and the value of sq being known. The latter expression
corresponds to uniform inelastic strain in the x3 direction (see Fig. 6).
The analytical solution for the displacement field at every r, θ and z
takes the following form

= = =
=

u r Z r
r

u u z, 0 and ,r
q

i
q i

q
z

q( )

1

2

,
1

1 ( ) ( )i

(39)

with = 11 and = 12 . The unknown coefficients Zq,i are determined
from the boundary conditions, the interface relations (25) and (26) and
the condition that the displacements are finite at =r 0.

Fig. 5. Boundary value plane strain/axial electric and magnetic field condi-
tions. Case of uniaxial strain in the x1 direction.

Fig. 6. Boundary value problem for hydrostatic strain/axial inelastic strain
conditions.
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3.2.3. Computing the interaction tensors
Solving the previously described boundary value problems, the

fields E
q( )

can be computed in both the fiber and its coating.
Consequently, the average values E1 and E2, expressed in Cartesian
coordinates, can be evaluated analytically with the help of the ex-
pressions (19). In these studies, the values of β, γ, βe, βm, sq, sq,β, sq,γ, sq

e

and sq
m can be chosen properly in order to “construct” the interaction

tensors (for instance, setting one equal to 1 and zero to the rest). The
four discussed boundary value problems are sufficient for identifying all
the terms of Ti and Tq i

p
, . The computations are lengthy and are omitted

in the current manuscript. Similar computational procedure is de-
scribed in Chatzigeorgiou and Meraghni (2019) and
Chatzigeorgiou et al. (2019).

It is important to note that the general forms of the elastic and in-
elastic interaction tensors in all phases are given by the expressions

= =T
T T T
T T T

T T T
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T T T
T T T

T T T
, ,

e m

e ee em

m me mm

p
p p e p m

pe pee pem

pm pme pmm
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0

0

00 0 0

0

0 (40)

where the various submatrices are written as
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In the above formulas, the symbols [{•}]mec, [{•}]elc and [{•}]mag denote
quantities that are activated by the presence of strains, electric fields
and magnetic fields, respectively. Appendix Apresents the computa-
tional details for obtaining the various T terms.
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3.3. Alternative approach: Hill’s interfacial operators

The solution to the original problem proposed by Eshelby (1957) is
valid for uncoated inhomogeneities of ellipsoidal shape inside a matrix
material. In the case of coated inhomogeneity, the Eshelby approach
provides information for the average strain inside the inhomogeneity/
coating system. To identify the strains at each phase, one can use the
concept of the interfacial operators (Walpole, 1978; Hill, 1983). This
technique has been widely utilised in the literature for composites with
mechanical (Cherkaoui et al., 1995; Berbenni and Cherkaoui, 2010;
Chatzigeorgiou and Meraghni, 2019), piezoelectric
(Chatzigeorgiou et al., 2019), thermo-piezoelectric (Koutsawa et al.,
2010), piezoelectric-piezomagnetic (Dinzart and Sabar, 2011), and
thermo-piezoelectric-piezomagnetic (Koutsawa et al., 2011) behaviour.

The computational steps for obtaining the elastic and interaction
tensors for a composite with pure mechanical behaviour have been
described in detail in Chatzigeorgiou and Meraghni (2019). For a pie-
zoelectric-piezomagnetic composite the procedure is similar, with the
only difference that the fields have the extended form presented in
Section 2. It is important to point out that the use of Hill’s interfacial
operators implies implicitly the hypothesis that in the Eshelby problem
the total fields inside the inhomogeneity are uniform. As has been il-
lustrated in Chatzigeorgiou and Meraghni (2019), under transverse
shear conditions this hypothesis is violated in long fiber composites and
thus can provide inaccurate results in certain cases.

3.4. Mori–Tanaka approach

Once the tensors Ti and Tq i
p
, are identified with one of the two ap-

proaches discussed previously, one can pass to the next step and con-
sider the composite.

A direct approach, like for instance the generalised self consistent
composite cylinders method (Christensen, 1979), is applicable for the
problem under investigation. It provides the local distribution of the
fields in the representative volume element, but it is quite limited, since
it is designed exclusively for unidirectional fiber composites with
random distribution of the fibers. The current work considers the
Mori–Tanaka method for identifying the macroscopic response of the
composite. A mean-field approach is more flexible in terms of micro-
structural characteristics; it can account for non-uniform distributions
of the fibers, or the presence of different types of reinforcement. The
restriction of the proposed methodology is that it estimates only
average fields per material phase and not their actual spatial distribu-
tion, which is the case for full field approaches.

A unidirectional coated fiber composite consists of a matrix phase in
which coated fibers are distributed randomly (see Fig. 7). In this three-
phase composite, the volume fractions of the matrix, the fibers and their
coating are denoted as cq, =q 0, 1, 2. Using the ratio, ϕ, the following
relations can be given

= + =c c c c cand 1 .2 1
1

0
1

(53)

According to the basic principle of all multiscale methods, the
macroscopic fields at a macroscopic point are equal to the average of
the corresponding microscopic fields over the representative volume
element linked with the specific macroscopic point. In the composite
considered here, the macroscopic fields, Ē and ¯ , are given by

= + +
= + +

E E E Ec c c
c c c

¯ ,
¯ .

0 0 1 1 2 2

0 0 1 1 2 2 (54)

Moreover, the constitutive law for each phase can be written in its
average form

= =E E r·[ ], 0, 1, 2.r r r r
p (55)

In the Mori–Tanaka method, the far field, E0, and the eigenfield, E ,p
0 of

the expressions (20) correspond to the average field and the average
eigenfield of the matrix phase of the composite. Combining (20) and
(54)1, and after some algebra, the following relations are derived for

=r 0, 1, 2
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(56)

with
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0
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2

, , ,
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2

,
(57)

for =q 0, 1, 2 and =s 1, 2. In the above expression, is the 12 × 12
identity matrix. Moreover, combining Eqs. (20), (56), (57) and (54)2,
yields

= E E¯ ¯ ·[ ¯ ¯ ],p (58)

with

Table 1
Electro-magneto-mechanical properties for the materials utilised in the nu-
merical examples. The properties of CoFe2O4, BaTiO3 and epoxy have been
obtained from Lee et al. (2005). The material parameters for the glass have
been obtained from Dinzart and Sabar (2011).

CoFe2O4 BaTiO3 Glass Epoxy

n [GPa] 269.5 162 88.8 5.53
l [GPa] 170.5 78 29.6 2.97
Ktr [GPa] 229.5 121.5 59.2 4.25
μtr [GPa] 56.5 44.5 29.6 1.28
μax [GPa] 45.3 43 29.6 1.28

e
11 [C2/N m2] 0.8·10 10 112·10 10 0.56·10 10 1·10 10

e
33 [C2/N m2] 0.93·10 10 126·10 10 0.56·10 10 1·10 10

m
11 [N/A2] -590·10 6 5·10 6 1·10 6 1·10 6

m
33 [N/A2] 157·10 6 10·10 6 1·10 6 1·10 6

e31 [C/m2] 0 -4.4 0 0
e33 [C/m2] 0 18.6 0 0
e15 [C/m2] 0 11.6 0 0
f31 [N/Am] 580.3 0 0 0
f33 [N/Am] 699.7 0 0 0
f15 [N/Am] 550 0 0 0
j11 [C/Am] 0 0 0 0
j33 [C/Am] 0 0 0 0

Fig. 7. Cross section of unidirectional fiber composite. The fibers are coated
and all phases exhibit piezoelectric-piezomagnetic behaviour.
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= =
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q
q
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q
p

q
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q q
i

i i q i
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0

2

0

2
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(59)

It is worth noting that non-uniform distributions of fibers can be
accounted for by introducing appropriate orientation distribution
functions in the expressions (57) and (59). One should bear in mind that
the Mori–Tanaka scheme for reinforced composites with non-uniform
alignment may lead to non-symmetric macroscopic magneto-electro-
mechanical matrix ¯ . The symmetry issue could be potentially resolved
by choosing another mean-field approach with similar structure, for
example the Castañeda and Willis method (Ponte-Castañeda and Willis,
1995; Giordano, 2017). The latter assumes a unified ellipsoidal shape

for the distribution of heterogeneities, which provides a consistent
homogenization scheme and ensures the symmetry of the macroscopic
matrix ¯ for non-uniform alignment of the fibers.

4. Numerical applications

The purpose of this section is to demonstrate the developed mi-
cromechanics technique capabilities. For the needs of the numerical
examples, four different materials are examined: CoFe2O4, BaTiO3,
glass and epoxy. The first one exhibits piezomagnetic behaviour, the
second has piezoelectric characteristics and the last two present a ty-
pical mechanical response without magnetomechanical or electro-
mechanical couplings. The material parameters of these materials are
summarised in Table 1.

Fig. 8. Material properties as a function of the fiber volume fraction for a composite consisting of CoFe2O4 matrix and BaTiO3 long fibers: (a) mechanical, (b)
piezoelectric and (c) electromagnetic coefficients. Comparison of the developed method predictions (solid lines) with numerical results obtained by Lee et al. (2005)
(points).
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4.1. Validation

In the first subsection, the electro-magneto-elastic properties of long
fibers composites with and without coating layer are computed with the
proposed method and are compared with the predictions of other
methods in the literature.

In the first example, a composite consisting of CoFe2O4 matrix and
BaTiO3 long fibers is analyzed and the results are compared with the
periodic homogenization predictions provided by Lee et al. (2005). The
mechanical stiffness coefficients, the piezoelectric coupling terms and
the electromagnetic coupling terms are demonstrated in Fig. 8 as a
function of the fiber volume fraction. The numerical results for the
periodic homogenization analyses have been obtained only for two
different volume fractions, 40% and 60% percent. As it can be ob-
served, the new model simulations are in excellent agreement with the
full field homogenization results.

The second example illustrates results from studies in Dinzart and
Sabar (2011). In that paper, an Eshelby-based micromechanics

technique was developed using the Hill’s interfacial operators. In their
analysis, glass fibers coated with BaTiO3 coating layer are embedded in
CoFe2O4 matrix. The aspect ratio of the fibers (length to radius dia-
meter) is 100, which is quite large and can serve for the purpose of this

Fig. 9. Electromagnetic properties as a function of the coated fiber volume fraction of a composite consisting of CoFe2O4 matrix and glass fibers coated with BaTiO3

coating layer: comparison of the developed method predictions (solid lines) with numerical results obtained by Dinzart and Sabar (2011) (points).

Fig. 10. Composite consisting of CoFe2O4 matrix and glass fibers coated with BaTiO3 coating layer. Macroscopic stress, electric displacement and magnetic induction
fields, caused by thermal strains: (a) ratio = 50% and (b) ratio = 80%.

Fig. 11. Composite consisting of CoFe2O4 matrix and glass fibers coated with
BaTiO3 coating layer. Average microscopic stress, electric displacement and
magnetic induction fields per phase, caused by thermal strains, for fiber volume
fraction 20% and ratio = 50%.
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paper as almost long fiber. The ratio ϕ for the coated fibers is taken
equal to 82.645%. Fig. 9 illustrates the electromagnetic coupling terms
of the composite as a function of the fiber volume fraction. The results
of both methods are in good agreement and the small difference is
mainly due to the finite value of the fibers’ aspect ratio.

The above preliminary examples demonstrate that the new ap-
proach has the same accuracy with existing homogenization techniques
in terms of electro-magneto-mechanical properties. The following nu-
merical studies demonstrate the ability of the model to predict both
macroscopic and average microscopic fields per phase when nonlinear
fields take place.

4.2. Applied thermal strains

A typical example of inelastic deformation is the appearance of
thermal strains. Consider a composite made of CoFe2O4 matrix and
glass fibers coated with BaTiO3 coating layer. The composite is assumed
free from external loading and only a temperature difference of 1 K is
applied. The thermal expansion coefficients for the matrix, the fiber and
the coating are taken equal to 10 5 1/K, 5·10 6 1/K and 6.4·10 6 1/K
respectively.

According to the general principles of homogenization of compo-
sites subjected to thermomechanical processes, the microscopic and

macroscopic temperature coincide (Chatzigeorgiou et al., 2018), i.e. all
material phases in the RVE are subjected to the same temperature dif-
ference of 1 K. This leads to the development of inelastic (thermal)
strains in all phases:

=
=
=

[10 10 10 0 0 0] ,
[5·10 5·10 5·10 0 0 0] ,
[6.4·10 6.4·10 6.4·10 0 0 0] .

p T

p T

p T

0 5 5 5

1 6 6 6

2 6 6 6

Fig. 10 illustrates the non zero terms of the macroscopic stress
tensor, the electric displacement vector and the magnetic induction
vector that are generated due to the thermal strains as a function of the
fiber volume fraction. Considering the coating, two different ratios ϕ
are considered: = 50% and = 80%. From these results one observes
that the stresses and the magnetic induction increase with the increase
of c1, while the electric displacement initially has a small increase and
then decreases as the fiber volume fraction obtains high values.

The average microscopic fields per phase for fiber volume fraction
20% and ratio = 50% are demonstrated in Fig. 11. As it can be ob-
served, the electric displacement for the matrix and the fiber are zero.
This phenomenon is explained by the structure of the interaction ten-
sors (40) and the constitutive relations (8). The terms Te0 and Tpe0 are
linked with the development of electric fields inside the fiber and the
coating due to the presence of mechanical strains. Similarly, the terms

Fig. 12. Composite consisting of epoxy matrix and CoFe2O4 fibers coated with
BaTiO3 coating layer, subjected to inelastic normal strains. Stress, electric dis-
placement and magnetic induction, caused by inelastic normal strains, for ratio

= 50%: (a) macroscopic fields and (b) average microscopic fields per phase for
fiber volume fraction 20%.

Fig. 13. Composite consisting of epoxy matrix and CoFe2O4 fibers coated with
BaTiO3 coating layer, subjected to inelastic normal strains. Stress, electric dis-
placement and magnetic induction, caused by inelastic axial shear strains, for
ratio = 50%: (a) macroscopic fields and (b) average microscopic fields per
phase for fiber volume fraction 20%.
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Tm0 and Tpm0 are linked with the development of magnetic fields inside
the fiber and the coating due to the presence of mechanical strains. As it
can be seen by the expressions (43)–(46) for these terms, elastic or
inelastic normal strains cannot produce electric or magnetic field in the
phases. Thus, according to the constitutive law relations (8), the de-
velopment of electric displacement can appear only in phases with non
zero piezoelectric coupling tensor e, as it is the case for the coating
(BaTiO3). The glass and the CoFe2O4 have zero piezoelectric coeffi-
cients, and thus no electric field can be generated in these materials
under only thermal strain conditions. For completely analogous rea-
sons, magnetic induction can only be generated in the matrix (CoFe2O4)
and not in the fiber or the coating. Contrarily to the microscopic scale,
electric displacement and magnetic induction parallel to the fiber axis
direction are generated at the macroscopic response, as it has already
been shown in Fig. 10.

4.3. Applied inelastic fields

Thermal strains are a special case of eigenfields. When nonlinear
mechanisms like plasticity are activated, the mechanical inelastic
strains may appear only on certain phases and do not act as a volu-
metric expansion.

Consider a composite consisting of epoxy matrix and CoFe2O4 fibers
coated with BaTiO3 coating layer. For this material system, two specific
cases where the matrix phase is subjected to inelastic strains are dis-
cussed:

• Case 1: Inelastic normal strains = = =2 2 0.001p p p
11 22 330 0 0 .

Fig. 12 shows the macroscopic and average microscopic responses of
the investigated composite under inelastic normal strains in the
matrix.
The evolution of the macroscopic normal stresses, axial electric
displacement and axial magnetic induction with respect to the fiber
volume fraction c1 is illustrated in Fig. 12a for ratio = 50%. It can
be noticed that all macroscopic fields present significant change
tendency at very high fiber volume fractions (i.e., when the matrix
volume fraction is close to zero). For the microscopic fields
(Fig. 12b), similar results to those of the previous study (presence of
thermal strains) are observed. Thus, electric displacement and
magnetic induction parallel to the fiber axis direction are generated
only in phases where piezoelectric and piezomagnetic coupling
terms, respectively, are non zero.
• Case 2: Inelastic shear strain = 0.001p

130 .
Fig. 13 shows the macroscopic and average microscopic responses of
the investigated composite under inelastic axial shear strains in the
matrix.

The evolution of the macroscopic axial shear stress, transverse
electric displacement and transverse magnetic induction with re-
spect to the fiber volume fraction c1 is given in Fig. 13a for ratio

= 50%. It can be noticed that all macroscopic fields present sig-
nificant change tendency at very high fiber volume fractions (i.e.,
when the matrix volume fraction is close to zero). For the micro-
scopic fields (Fig. 13b) one observes that all phases experience
electric displacement and magnetic induction. This is explained by
the fact that, according to the interaction tensors forms (43)–(46),
axial shear strain can activate electric and magnetic field. Thus,
electric displacement and magnetic induction can also be generated
in phases where electromechanical or magnetomechanical couplings
do not exist.

5. Concluding comments

A micromechanical method was proposed for the evaluation of the
electro-magneto-inelastic properties of coated long fiber composites
with transversely isotropic piezoelectric-piezomagnetic behaviour. The
method was based on solving specific boundary value problems (axial
shear/in plane electric and magnetic field, transverse shear strain,
plane strain/axial electric and magnetic field, hydrostatic strain/axial
inelastic strain) and was adapted to the Mori–Tanaka homogenization
scheme. The capabilities of the proposed micromechanics technique
were verified through several numerical applications. Four materials
with different behaviours have been examined (CoFe2O4 as a piezo-
magnetic material, BaTiO3 as a piezoelectric material and both glass
and epoxy as mechanical material without magneto- or electro-me-
chanical coupling) for the needs of the numerical applications. A
comparison with existing homogenization techniques in terms of
electro-magneto-mechanical properties of long fiber composites was
first conducted. The simulation results of the proposed approach were
in good agreement with the full field homogenization results. Small
difference has been observed when comparing the electromagnetic
coupling terms with studies conducted by Dinzart and Sabar (2011).
This difference was mainly attributed to the finite value of the fibers’
aspect ratio. The ability of the model to predict both macroscopic and
average microscopic fields per phase when nonlinear fields are acti-
vated was then demonstrated. Three cases of applied inelastic fields
were considered: thermal strains, inelastic normal strains and inelastic
shear strains. The effect of the inelastic fields on the overall response, as
well as in the average response of the phases, was then explicitly in-
vestigated. The proposed micromechanics approach is able to handle
microstructures with aligned or non-aligned fiber composites with
piezoelectric-piezomagnetic behaviour under inelasticity conditions.

Appendix A. Computational steps for obtaining the interaction tensors

The unknown constants Ξq,i and Zq,i of the boundary value problems presented in Section 3.2 are identified using i) the boundary conditions at
=r r ,ext ii) the consistency condition that the fields should be finite at =r 0, and iii) the interface conditions (25) and (26) between the material

phases.
Before presenting the solution of the four boundary value problems, the following helpful matrices and vectors are introduced: Let’s consider an

arbitrary material parameter ω. For the three phases this parameter becomes ωq for =q 0, 1, 2. The next matrices and vectors

= =K K

1 1 1 0
0

0 1
0

,

0 0 0 0
0

0 0 0 0
0

,1 2 2

2 2 0

mix 1 2 2

2 2 0 (A.1)

= = = = =F F F F F
0
0
1 ,

0
0
0 ,

0
0
0 ,

0

0
0

,
0

0 ,
0

mix

0

0

0

1 1 2 2

2 (A.2)

have general description for the arbitrary ω and they become specific, once the ωq are assigned to proper material parameters.
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A1. Axial shear/in-plane electric and magnetic field

For this boundary value problem, the boundary conditions and the fact that all fields should be finite at =r 0 yield

= = = = = =0, , , .e m e e m m
1,2 1,2 1,2 0,1 0,1 0,1 (A.3)

The rest of unknown constants are given by the solution of the system

= + + + + +
=

K F F F F F Fs s s· [ ],xz xz
e

xz
e m

xz
m

q
q xz

p q
q
e

xz
pe q

q
m

xz
pm q

0

2
, , ,

(A.4)

where

= = = =F
F
F
F

F
F

F
F

F
F

F
F

, , , ,e
m

xz

xz

xz
e

xz
m

xz
e

xz
e

xz
ee

xz
em

xz
m

xz
m

xz
em

xz
mm

(A.5)

= = =F
F
F
F

F
F

F
F

F
F

F
F

, , ,xz
p q

xz
p q

xz
pe q

xz
pm q

xz
pe q

xz
pe q

xz
pee q

xz
pem q

xz
pm q

xz
pm q

xz
pem q

xz
pmm q

,

,

,

,

,

,

,

,

,

,

,

,
(A.6)

and

=K
K K K
K K K
K K K

,xz

xz xz
e

xz
m

xz
e

xz
ee

xz
em

xz
m

xz
em

xz
mm

(A.7)

with

= = =, , .e

e

e

e

e

m

m

m

m

m

1,1

2,1

2,2

0,2

1,1

2,1

2,2

0,2

1,1

2,1

2,2

0,2 (A.8)

The various vectors and matrices are given in Table A.1
The solution of this system can be written in the form

= + + + + +
=

s s s[ ],e m

q
q

p q
q
e p q

q
m p q

mec elc mag
0

2

mec
,

elc
,

mag
,

(A.9)

which can be split in three parts,

= + + + + +

= + + + + +

= + + + + +

=

=

=

s s s

s s s

s s s

[ ],

[ ],

[ ].

e m

q
q

p q
q
e p q

q
m p q

e e e e m e

q
q

pe q
q
e pe q

q
m pe q

m m e m m m

q
q

pm q
q
e pm q

q
m pm q

mec elc mag
0

2

mec
,

elc
,

mag
,

mec elc mag
0

2

mec
,

elc
,

mag
,

mec elc mag
0

2

mec
,

elc
,

mag
,

(A.10)

The average strains, electric fields and magnetic fields in the fiber and the coating are given by

=
=
= =i

[0 0 0 0 1 0] ,
[1 0 0] ,
[1 0 0] , 1, 2,

i xz
i T

i xz
e i T

i xz
m i T

,

, (A.11)

Table A.1
Axial shear/in-plane electric and magnetic field: matrices and vectors used to compute the unknown constants. Each element in this table is computed by substituting
to the general matrices or vectors a specific parameter for ω. The superscript q takes the value 0, 1 or 2.

ω

μax e15 f15 e
11

m
11 j11

Kω Kxz Kxz
ee Kxz

mm

K mix Kxz
e Kxz

m Kxz
em

Fω Fxz Fxz
ee Fxz

mm

Fmix Fxz
e Fxz

m Fxz
em

F q Fxz
p q, Fxz

pe q, Fxz
pm q, Fxz

pee q, Fxz
pmm q, Fxz

pem q,
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with

= =
+

= =
+

= =
+

,
[ ]

1
,

,
[ ]

1
,

,
[ ]

1
.

xz xz
xz

xz
e e

xz
e

e e
xz
e

xz
m m

xz
m

m m
xz
m

1
1,1

2 0,2
1

,1
1,1

,2 0,2
,1

,1
1,1

,2 0,2
,1

(A.12)

The ,xz
i

xz
e i, and xz

m i, can be expressed in the same forms as (A.10).

A2. Transverse shear

The boundary conditions and the fact that the displacement should be finite at =r 0 yield

= = = =0, .1,3 1,4 0,1 0,2 (A.13)

The rest of unknown constants are given by the solution of the system

= +
=

K F Fs· ,xy xy
q

q xy
p q

0

2
,

(A.14)

with

=

=

=

=

=

F

F

F

F

µ µ

µ µ

µ µ

µ µ µ µ

[ ] ,

[0 0 0 0 1 1 2 2 ] ,

[0 0 0 0 0 0 2 2 ] ,

[0 0 2 2 0 0 0 0] ,

[0 0 2 2 0 0 2 2 ] ,

T

xy
T

xy
p T

xy
p T

xy
p T

1,1 1,2 2,1 2,2 2,3 2,4 0,3 0,4

0
tr

0
tr

,0
0
tr

0
tr

,1
1
tr

1
tr

,2
2
tr

2
tr

2
tr

2
tr

(A.15)

and

=K

K K K K K K
K K K K K K

K K K K K K
K K K K K K

1 1 1 0 0
1 1 1 1 1 1 0 0

0 0
0 0

0 0 / 1
0 0 1/ 1
0 0
0 0

,xy

1,1 2,1 2,4

31 32 33 34 35 36

41 42 43 44 45 46

2,1
2

2,4
2

0,4
2 2

73 74 75 76 77 78

83 84 85 86 87 88 (A.16)

with

= + + =
= + =
= = +

K K µ K µ
K K µ K µ
K µ K µ K

2 [2 1] 2 [1 ], 2 ,
2 [2 1] 2 [1 ], 2 ,
6 , 2 [ 1] 2 ,

31 1
tr

1,1 1
tr

1,1 32 1
tr

33 2
tr

2,1 2
tr

2,1 34 2
tr

35 2
tr

36 2
tr

2,4 2
tr

= + =
= + =
= =

K µ K µ
K µ K µ
K µ K µ

2 [1 ], 2 ,
2 [1 ], 2 ,

6 , 2 [1 ],

41 1
tr

1,1 42 1
tr

43 2
tr

2,1 44 2
tr

45 2
tr

46 2
tr

2,4

= + + =
= = +
= = +

K K µ K µ
K µ K µ K
K µ K µ K

[2 [2 1] 2 [1 ]]/ , 2 ,
6 , [2 [ 1] 2 ] ,

6 , [2 [ 1] 2 ] ,

73 2
tr

2,1 2
tr

2,1 74 2
tr

75 2
tr 2

76 2
tr

2,4 2
tr

77 0
tr 2

78 0
tr

0,4 0
tr

= + =
= =
= =

K µ K µ
K µ K µ
K µ K µ

2 [1 ]/ , 2 ,
6 , 2 [1 ] ,

6 , 2 [1 ] .

83 2
tr

2,1 84 2
tr

85 2
tr 2

86 2
tr

2,4

87 0
tr 2

88 0
tr

0,4

The solution of this system can be written in the form

= +
=

s .
q

q
p q

mec
0

2

mec
,

(A.17)

The average strains in the fiber and the coating are given by
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= 2 [0 0 0 1 0 0] ,i xy
i T (A.18)

with

=
+

+ = +
+1

2
, 1

1
1

2
.xy xy xy

1 1,1
1,1 1,2

2 0,4
0,4

1

(A.19)

The xy
i can be expressed in the same form as (A.17).

A3. Plane strain/axial electric and magnetic field

The boundary conditions and the fact that the displacement should be finite at =r 0 yield

= = = = = =Z Z0, , .1,3 1,4 0,1 1,2 0,2 0,1 (A.20)

The rest of unknown constants are given by the solution of two systems:

1. The first is written as

= + + + + +
=

K Z F F F F F Fs s s· [ ],xx xx
e

xx
e m

xx
m

q
q xx

p q
q
e

xx
pe q

q
m

xx
pm q

0

2

,
, , ,

(A.21)

with

=Z Z Z Z Z[ ] ,T1,1 2,1 2,2 0,2 (A.22)

= = =F F F F Kand for 2 ,xx xx
p q q, tr (A.23)

= = =

= = =

=

=

F F F F

F F F F

e

f

and for ,

and for ,

xx
e

q

q
xx
pe q q

xx
m

q

q
xx
pm q q

0

2
,

31

0

2
,

31
(A.24)

and

=K
K K µ

K µ µ

1 1 1 0
2 2 2 0

0 1
0 2 2 2

.xx
1
tr

2
tr

2
tr

2 2
tr

0
tr

(A.25)

The solution of this system can be written in the form

= + + + + +
=

Z Z Z Z Z Z Zs s s[ ].e m

q
q

p q
q
e p q

q
m p q

mec elc mag
0

2

mec
,

elc
,

mag
,

(A.26)

2. The second is written as

= +
=

K F Fs· ,xy xy
q

q xy
p q

0

2

,
,

(A.27)

where Ξ, Fxy, Fxy
p q, are given by (A.15) and Kxy is given by (A.16).

The average strains, electric fields and magnetic fields in the fiber and the coating are given by

= +
= =

[1 1 0 0 0 0] [1 1 0 0 0 0] ,
[0 0 1] , [0 0 1] ,

i xx
i T

xy
i T

i
e T

i
m T (A.28)

with

= =
+

Z
Z

,
[ ]

1
,xx xx

xx1
1,1

2 0,2
1

(A.29)

and ,xy
1

xy
2 are the same with those of the expressions (A.19). The xx

i can be expressed in the same form as (A.26).

A4. Hydrostatic strain

For this boundary value problem, the boundary conditions and the fact that the displacement should be finite at =r 0 yield
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= =Z Z0, .1,2 0,1 (A.30)

The rest of unknown constants are given by the solution of the system

= +
=

K Z F Fs· ,xx zz
q

q zz
p q

0

2
,

(A.31)

with

= = +Z FZ Z Z Z l l K l l[ ] , [0 1 2 ] ,T
zz

T
1,1 2,1 2,2 0,2 2 1 0

tr
0 2 (A.32)

= =F F lfor ,zz
p q q, (A.33)

and Kxx is the same with (A.25). The solution of this system can be written in the form

= +
=

Z Z Zs .
q

r
p q

mec
0

2

mec
,

(A.34)

The average strains in the fiber and the coating are given by

= [ 1 0 0 0] ,i zz
i

zz
i T

(A.35)

with

= =
+

Z
Z

,
[ ]

1
.zz zz

zz1
1,1

2 0,2
1

(A.36)

The zz
i can be expressed in the same form as (A.34).

A5. Interaction tensors

Regrouping the results of the previous subsections, one finds that the interaction tensor components in (41)–(52) are given by the expressions

= =
= =

= =
= =

= =
= =

= =
= =
= =

= =
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= =
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[ ] [ ] , [ ] [ ] .

xx
i

xx
i

zz
i

zz
i

xy
i

xy
i

xz
i

xz
i

xx
p q i

xx
p q i

zz
p q i

zz
p q i

xy
p q i

xy
p q i

xz
p q i

xz
p q i

xz
e i

xz
e i

xz
pe q i

xz
pe q i

xz
m i

xz
m i

xz
pm q i

xz
pm q i

xx
i

xx
i

xz
i

xz
i

xx
p q i

xx
p q i

xz
p q i

xz
p q i

xx
i

xx
i

xz
i

xz
i

xx
p q i

xx
p q i

xz
p q i

xz
p q i

xz
e i

xz
e i

xz
pe q i

xz
pe q i

xz
m i

xz
m i

xz
pm q i

xz
pm q i

xz
m i

xz
m i

xz
pm q i

xz
pm q i

xz
e i

xz
e i

xz
pe q i

xz
pe q i

mec mec mec mec

mec mec mec mec
, ,

mec
, ,

mec
, ,

mec
, ,

mec
, ,

mec
, ,

mec
, ,

mec
, ,

mec
,

mec
,

mec
, ,

mec
, ,

mec
,

mec
,

mec
, ,

mec
, ,

mec

elc elc elc elc
, ,

elc
, ,

elc
, ,

elc
, ,

elc

mag mag mag mag
, ,

mag
, ,

mag
, ,

mag
, ,

mag
,

elc
,

elc
, ,

elc
, ,

elc
,

mag
,

mag
, ,

mag
, ,

mag
,

elc
,

elc
, ,

elc
, ,

elc
,

mag
,

mag
, ,

mag
, ,

mag (A.37)
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